osc.data.utils.augment_train
- augment_train(img: tensorflow.python.framework.ops.Tensor, *, seed: tensorflow.python.framework.ops.Tensor, crop_size: Tuple[int, int], crop_scale: Tuple[float, float], mean: Tuple[float, float, float], std: Tuple[float, float, float]) tensorflow.python.framework.ops.Tensor[source]
Augment image for train/val. Pass different seeds to get different augmentations.
Augmentations applied:
uint8 [0-255] -> float32 [0-1]
random flip
random resized crop (random aspect ratio, zoom factor, resize to
crop_size)color jitter (brightness, saturation, hue)
normalization to given
meanandstdpytorch channel order [H W C] -> [C H W]
- Parameters
img (
Tensor) – tf.uint8 tensorseed (
Tensor) – random seed used as base seed for all transformationscrop_size (
Tuple[int,int]) – size of the image after croppingcrop_scale (
Tuple[float,float]) – minimum and maximum crop scale for example(0.3, 1.0)mean (
Tuple[float,float,float]) – image mean for normalizationstd (
Tuple[float,float,float]) – image std for normalization
- Return type
Tensor